Machine learning tutorial
machine learning is a subset of artificial intelligence (ai) which predicate the feature depending upon on past experience.
machine learning uses statistical model that computer uses to effectively perform a specific task without using explicit programming.
In the app learn machine learning, artificial intelligence, deep learning, neural network, python, R language and many more...
We learn in machine learning
- Concepts
-Types of learning
-Supervised Learning
-Unsupervised Learning
-Data pre-processing, analysis and visualization
-Training data and test data
-Applications
-Regression
- Algorithms
-decision tree algorithm
-Support vector machines (SVM)
-Naive bayes algorithm
-KNN (k-nearest neighbours)
- K-means
-Random forest
-Dimensional reduction algorithm
-boosting algorithms
artificial intelligence
-Overview of ai
-Intelligent systems
-Agents and environments
-Popular search algorithms
-Fuzzy logic systems
-Natural language processing
-Expert systems
-Robotics
-Neural networks
Also learn more about deep learning , Neural Network in detail
机器学习教程
机器学习是人工智能(ai)的一个子集,它根据过去的经验预测特征。
机器学习使用计算机用于有效执行特定任务的统计模型,而无需使用显式编程。
在app学习机器学习,人工智能,深度学习,神经网络,python,R语言等等......
我们在机器学习学习
- 概念
- 学习类型
- 监督学习
- 无监督学习
- 数据预处理,分析和可视化
- 培训数据和测试数据
-applications
-Regression
- 算法
- 决策树算法
- 支持向量机(SVM)
-aive bayes算法
-KNN(k-最近邻居)
- K-means
- 随机森林
- 三维约简算法
- 提升算法
人工智能
- ai概述
- 智能系统
- 代理和环境
- 流行搜索算法
- 模糊逻辑系统
- 自然语言处理
- 专家系统
-Robotics
-神经网络
还详细了解深度学习,神经网络